Galois module structure of units in real biquadratic number fields
نویسندگان
چکیده
منابع مشابه
Nontrivial Galois module structure of cyclotomic fields
We say a tame Galois field extension L/K with Galois group G has trivial Galois module structure if the rings of integers have the property that OL is a free OK [G]-module. The work of Greither, Replogle, Rubin, and Srivastav shows that for each algebraic number field other than the rational numbers there will exist infinitely many primes l so that for each there is a tame Galois field extensio...
متن کاملRelative Galois Module Structure of Rings of Integers of Absolutely Abelian Number Fields
We define an extension L/K of absolutely abelian number fields to be Leopoldt if the ring of integers OL of L is free as a module over the associated order AL/K of L/K. Furthermore, we say that an abelian number field K is Leopoldt if every extension L/K with L/Q abelian is Leopoldt. In this paper, we make progress towards a classification of Leopoldt number fields and extensions. The two main ...
متن کاملGalois Module Structure of Galois Cohomology
Let F be a field containing a primitive pth root of unity, and let U be an open normal subgroup of index p of the absolute Galois group GF of F . We determine the structure of the cohomology group H(U, Fp) as an Fp[GF /U ]-module for all n ∈ N. Previously this structure was known only for n = 1, and until recently the structure even of H(U, Fp) was determined only for F a local field, a case se...
متن کاملNontrivial Galois Module Structure of . . .
We say a tame Galois field extension L/K with Galois group G has trivial Galois module structure if the rings of integers have the property that OL is a free OK [G]-module. The work of Greither, Replogle, Rubin, and Srivastav shows that for each algebraic number field other than the rational numbers there will exist infinitely many primes l so that for each there is a tame Galois field extensio...
متن کاملRecognizing Units in Number Fields
We present a deterministic polynomial-time algorithm that decides whether a power product n¿=i ff is a umt m tne ring of integers of K , where K isa number field, y, are nonzero elements of K and n¡ are rational integers. The main algorithm is based on the factor refinement method for ideals, which might be of independent interest.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Arithmetica
سال: 2004
ISSN: 0065-1036,1730-6264
DOI: 10.4064/aa111-2-1